Invited Speaker-----Prof. Bhumi Nath Tripathi

Professor & Head, Department of Biotechnology; Dean, Faculty of Earth Sciences, Indira Gandhi National Tribal University, Amarkantak, 484887, Madhya Pradesh, India
Biograph
Bhumi Nath Tripathi, PhD from Banaras Hindu University, India, works as Professor and Head, Department of Biotechnology and as Dean, Faculty of Earth Sciences at Indira Gandhi National Tribal University (A Central University), Amarkantak, India. The research works of Professor Tripathi is focused on Redox Homeostasis in Plants during Stress Conditions and also Molecular Biology of Abiotic Stress Responses in Plants. He has also worked at Bielefeld University, Germany, Okayama University, Japan, University of Leeds, UK and Korea Atomic Energy Research Institute, South Korea. Professor Tripathi has published more than 50 good quality research papers in journals of International repute and also written four books on Stress Metabolism, Biotechnology, Molecular Biology and Algal Biotechnology. He is recipient several awards and academic fellowships and several research grants.
Speech Title: Interaction of magnesium with heavy metal toxicity in wheat
Abstract: The present work demonstrates the influence of magnesium (Mg) on copper (Cu) and cadmium (Cd) toxicity on Triticum aestivum (Wheat). We measured a range of parameters related to oxidative stress in wheat exposed to Cu or Cd toxicity in media with different concentrations of Mg. Decreasing Mg concentration significantly exacerbated Cu and Cd toxicity and optimum supply of Mg improved the growth and decreased the toxicity induced oxidative stress (a substantial decline in the amount of hydrogen peroxide (H
2O
2) and malondialdehyde (MDA) in root and shoot tissues). Activity of antioxidant enzymes superoxide dismutase (SOD), ascorbae peroxidase (APX), catalase (CAT) was restored upon optimum Mg concentration in the presence of Cu and Cd toxicity. An increase in proline concentration in roots and shoots that was triggered by Cu and Cd exposure was partly reversed. This was due to decline in pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) activity and enhanced proline dehydrogenase (PDH) activity. In conclusion, decreasing supply of Mg effectively exacerbated the toxicities of Cu and Cd in wheat.